
Static Analyzer: A Final Project Report by Kevin

Kelly

1

Table of Contents

Introduction ... 2

What I Achieved ... 3

What I Did Not Achieve .. 3

Issues I Encountered & How Were They Resolved 4

What I Learned & What I Would Do Differently .. 6

Differences in Design & Additional Research ..7

Module Descriptions ...7

Testing ... 9

2

Introduction
My final year project was to create a Static Analyzer that operated primarily on Linux,

being able to disassemble files, detect strings and imported libraries, and measure the

entropy of the file. This report will detail what roadblocks I encountered while

implementing this project, what I did and didn’t achieve, tests I had performed to ensure

the project works correctly, and what I would do differently were I to start again.

3

What I Achieved
When completed the project, I had achieved the following criteria:

• The program can analyze both Windows (PE) and Linux (ELF) executable files.

• The program, using the Capstone Disassembler, can convert the chosen file into

assembly language, presented into a table with highlights of code of interest.

• The program can detect all ASCII strings present in the executable, allowing the

user to find both the names of variables and functions, as well as what libraries are

imported by the program.

• The program can measure the entropy of the provided file, displaying a value

ranging from 0 to 8, providing the user a picture of the degree of obfuscation

present in the file.

What I Did Not Achieve
While I am satisfied with my project, there are certain elements that I was unable to

implement into its final version. This includes:

• A version of the project that can be run on Windows with all the features found on

the Linux version.

• The ability to edit and save the selected file. For example, be able to rename

variables or functions found in the disassembler to make understanding what is

occurring easier.

• Accessibility options for those who benefit from it. This can include an option to

change the font text or themes that change the color palette and layout of the

program.

4

Issues I Encountered & How Were They Resolved
As I worked on this project, there were several times where I came across an obstacle that

provided a challenge for me to overcome. Some of these obstacles, as well as what I did to

solve said problems include:

• My analyzer is compatible with executable files, meaning any other file would to

be rejected by the program. My initial plan for this was to check for a “.exe” in the

chosen filename, but there was the potential issue of users adding “.exe” to non-

executable files to bypass this. Additionally, Linux Operating Systems tend not to

make use of file extensions in filenames.

Solution: When the user selects a file, the first set of bytes are taken in by the

program. A check is then preformed to see if it contains the magic numbers seen

in either an ELF or PE file. This involves checking for 0x4D and 0x5A in hex for a

PE file and checking for 0x7F in hex and “ELF” in Ascii for an ELF file. If the chosen

file fails both checks, then the file is rejected, and the user is asked to choose a

different file.

• As part of the Detection of Strings and Libraries, users can filter what is displayed

via a text box where they can enter keywords. This is done so that the user can

look for a specific string or library. However, when implementing this, the lists

displaying the found strings and libraries would not be updated unless the user

switched tabs and then returned to the “Detect Strings” page, making it unwieldy

and troublesome to preform filtration.

Solution: All the strings/libraries found are stored in arrays, which form the basis

of the lists displayed to the user. When the user inputs a filter, the array is changed

to only house strings/libraries that contain the filter. The old list is then wiped and

replaced with the new array, followed by an update ran through the GUI. This

allows the list of detected strings/libraries to update and change as the user enters

filters.

• To achieve Disassembly, I made use of the Capstone Disassembler, which is

implemented through use of the Capstone Linux .so libraries, and the Java Native

Access (JNA) library. However, when I attempted to make use of Capstone, I

received a critical error, stating a “difference between the two versions”.

Solution: After attempting to solve the problem through trial and error, I

examined the GitHub Issues Page for the Capstone Disassembler, to see if others

have had this same problem. I discovered that this issue had yet to be fixed in the

latest version of Capstone, and that the recommended solution was to download

the previous version. Once this was done, I had the program functioning with all

the expected features.

5

• As stated previously, the Capstone Disassembler requires Java .so libraries to

function. When I compiled my project as an executable, these files were not

included. This caused the program to crash when it attempted to open a file.

Solution: When the project is compiled, include the .so libraries as part of the

project to be included, ensuring the executable version of the project has the

resources required to function.

6

What I Learned & What I Would Do Differently
This project has been a great experience that has furthered my development and

capability in several skills, including:

• Expanded my knowledge of Java and SwingX, the two core components required

for the project, such as how they function and operate, how it handles external

libraries and what’s required of them for inoperability between multiple Operating

Systems.

• Learned how to make use of the Capstone Disassembler, which handled the

decompiling of the chosen program into assembly language. I had to learn how to

link my project with the library, fix any errors that were present, and ensure

Capstone had the resources required when exporting the project into an

executable format.

• This project required the creation of wireframes as part of the documentation,

something I had not done before. Learning to create mockups of how the project

will look and function was an important learning experience for me, as creating

wireframes is a vital part of the software development lifecycle.

If I were to start this project again from scratch, I would have spent more time

creating a wireframe that is concrete and acts as a rough guideline to how I wish the

project to look by the end. This would have saved me more time in the long-term, as I

would not be attempting to design most of the GUI as I am coding it.

Additionally, I had spent a great amount of time attempting to fix linking errors

between my project and Capstone, while not using the GitHub Issues page for

Capstone to see how others had overcome the problems I had. Were I to start the

project again, I would have definitely have used this tool more to my advantage when

dealing with Capstone-related problems, especially considering GitHub is one of the

most commonly used tools in the world.

7

Differences in Design & Additional Research
An end goal for this project would that be it would have versions available for both

Windows and Linux. Unfortunately, due to complications regarding Capstone and it is

requiring .so Linux libraries to function, I settled on designing this project exclusively for

Linux.

When initially designing the GUI for the project, I had planned for the components of the

project – General Details, Disassembly, Detect Strings etc. – to all be placed in one page.

However, I had found this to cause a lot of visual clutter. Instead, I decided to make use

of a “Tabbed Pane”, a component in Java that allows pages to be separated into tabs and

dedicated a page for each of the components of the project.

As well as Capstone, I had also planned on importing the Bayes Server API, a library that

provides an array of functions and tools for statistics, including measuring entropy of a

file. However, I decided instead to implement my own function for measuring entropy,

rather than importing a library where only a small sliver of its content would be used.

For additional research, as I had decided to implement my own means of measuring

entropy, research was conducted on how that could be achieved. Additionally, research

through the Capstone documentation and forum to determine the solution to problems I

had encountered with its implementation.

Module Descriptions
HomePage.java

This file holds the GUI that asks the user to select a file that they wish to analyze. If a

non-executable (PE or ELF) file is selected, it is rejected.

Imported Libraries: Java Swingx (JButton, JFrame, JPanel, JFileChooser) Java IO

(file.Files, IOException) Java AWT (BorderLayout, ActionEvent, Action Listener)

MainPage.java

The core of the project. This holds all of the GUI components that present the main

functions of the project to the user.

Imported Libraries: Java Swingx (JButton, JFrame, JPanel, JOptionPane, JTable), Java

Security (MessageDigest) Java Util (ArrayList) Java AWT (BorderLayout, ActionEvent,

Action Listener), Capstone

8

Methods.java

Holds several functions I added to help in the implementation of the project, such as

functions that check if the file provided is a PE or ELF file.

Imported Libraries: Java IO (File, FileInputStream)

9

Testing
Below are the tests I preformed on my project, to ensure it behaved and responded as

expected:

Date Description Result

18th of April 2022 When prompted to select a
file for analysis, attempted
to provide a non-
executable. Files tested
included images, text files,
spreadsheets, and video
files

The program rejects these
files, as they do not contain
the beginning bytes present
in either PE or ELF
executable files

18th of April 2022 In the section for the
detection of strings and
libraries, entered long
complex strings to see how
the program will preform
based on this filter

The program filters the
strings presented based on
the user input. As the filter
provided does not appear
in any of the strings found,
the program returns a
blank list

18th of April 2022 In the table that displays
the disassembled program
code, tested the ability to
highlight instructions by
selecting different
instructions

When a new instruction is
clicked, all occurrences of
this instruction are
highlight, and the previous
instruction is reverted to
normal

